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8. CAPTURE-RECAPTURE METHODS.

8.1 Introduction                              

This chapter deals with some methods for estimating the absolute abundance o f
an animal population, using observations of marked individuals. There are two b r o a d
uses of marking for population studies. One use is in studying only the m a r k e d
population with little attention paid to unmarked individuals. Such studies may b e
concerned with temporal movements (either local or migratory), delineation o f
geographic range ("home range" of individuals, range of particular population o r
sub-group of a population), or life history aspects (growth rates, survival rates, a g e
specific reproductive rates, and so on). The other use is that of concern here, i n
which the primary interest is in the change in observed proportion tagged ( wh i c h
may initially be zero) as tagging progresses. The basic principle is the same in t h e
change-in-ratio method. An important distinction is that the more compl icated
capture-recapture methods do make use of information as to the identity of s i n g l e
individuals. A distinction is made between "single-recapture" and "mul t ip le -
recapture" methods. In the early studies, the basic assumption for virtually all of t h e
methods was that each and every individual in the population has the s a m e
probability of capture in any given sampling. Under such an assumption, a n y
individual behaves like every other individual, and information that an ind iv idua l
has been caught once before or many times is largely irrelevant. One might equa l l y
well replace a marked individual with one from another population insofar as t h e
theory of the method is concerned.

The assumption that individuals all behave alike insofar as capture i s
concerned is not very acceptable to most experienced field workers. In most cases, i t
is clear that the assumption is not realistic, and the issue is whether, in a g i v e n
situation, the resulting bias can be tolerated. Various aspects of this problem w i l l
turn up in what follows. It is worth mentioning here, though, that one i m p o r t a n t
means of testing the assumption of equal probability of capture does depend on t h e
history of capture of individuals -- if individuals do not behave identically, t h e n
their past history gives information on that fact. In some models such information i s
used to produce an improved estimate of population size.

In describing the various methods, perhaps the most important aspect is t h a t
of whether the population is "open" or "closed" to those factors that may p roduce
changes in the size of the population during the course of a capture-recapture study.
Individuals may move into and out of the study areas, some may die, and others m a y
be born or otherwise "recruited" to the population (in entomological studies,
transfers between instars, pupation, etc., are additional such factors). A "closed"
population with constant probability of capture permits very simple analyses, most ly
based on the binomial distribution. Although such populations may not exist i n
practice, such a model provides a useful starting place, and may at times be adequate.

"Open" populations produce many more complications, particularly if they a r e
small or if small changes are important. Then the models need to take into a c c o u n t
chance effects, that is, stochastic (as opposed to deterministic) models need to b e
employed. Only quite recently have fully stochastic models been developed;
fortunately their application in practice is less difficult than many of the p rev i ous
methods. We are thus currently at a stage where only one general method may n e e d
to be considered in many practical situations. However, since that model also depends
on the same unrealistic assumption of equal probability of capture, f u r t h e r
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developments are needed, and the practicing ecologist will have to spend a great dea l
of effort in checking and cross-checking his estimates.

In some cases, the simpler methods may be adequate, or constitute about a l l
that can be done under the circumstances of the study. Occasionally they may s h e d
some light on particular aspects of a problem, or weakness in a necessary assumpt ion
that  may not be apparent in the analysis of the more sophisticated form. Students
will also need an understanding of the essentials of the various methods t o
understand and appreciate much of what they will find in the literature on a
particular species. Thus a number of methods will be described here.

8.2 Petersen's method (Lincoln Index)                                                                      

While the first recorded use of this method has been ascribed to Laplace in t h e
16th century (Cormack 1968), there are two commonly cited origins for its use in f i s h
and wildlife work. Most fisheries workers know the technique as "Petersen's method"
due to a suggestion by C.G.J. Petersen in 1896. Wildlife workers tend to refer t o
"Lincoln's Index" due to its use by F.C.Lincoln in efforts to estimate North A m e r i c a n
waterfowl abundance in the 1930's. A third early use was by C.H.N.Jackson (1933) i n
his studies of tsetse flies in Africa.

The method requires only two census periods, one involving the i ni t i a l
marking of M individuals, of which m are recovered in the n animals caught on t h e
second occasion. If the population is closed (i.e., there are no gains or losses due t o
immigration, emigration, mortality, etc.), then it can be intuitively supposed that t h e
fraction marked in the population (M/N) may be estimated by the proportion o f
marked animals (m/n) found in the second sample; that is:

                                         m/n = M/N         and      N
^

   = Mn/m                                               (8.1)

The relevant probability distribution is the hypergeometric distribution.

The assumptions necessary to the method can readily be understood b y
reference to the model resulting in a hypergeometric distribution. One description i s
via an "urn" model. Suppose we have a vessel of some sort (an "urn") containing N
objects, M of which bear distinguishing marks (tags). If the objects are t h r o r o u g h l y
mixed, one is removed and recorded (but not returned), then the remaining objects
thoroughly mixed again, another removed and recorded, the objects mixed, a n o t h e r
removed, and so on until n have been removed (m of which are marked), then t h e
hypergeometric distribution serves to describe the behavior of the random v a r i a b l e
m, the number of marked individuals recovered in a sample of n. In practice, n is a lso
a random variable, but the usual approach is to consider the results to b e
"conditional" on the n actually observed, or to suppose that we sample on the second
occasion until exactly n individuals are examined for marks.

One advantage of the urn model is that it helps clarify the position as r e g a r d s
random sampling. In the urn model there is no requirement that the M marks be p u t
on according to any special scheme; the only requirement is thorough mixing b e f o r e
each draw (equivalent to random selection of the n animals taken on the second
occasion). For all practical purposes, one thorough mixing is enough, so that one c a n
infer the essential assumption to be one of either a random marking or a r a n d o m
recovery. Both are not required, as has been stated in the literature. In fact, it can b e
shown that the only essential feature is that the methods of capturing ind iv idua ls
need only be such that the individual probabilities of capture on the first occas ion
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are independent of those existing on the second (Junge 1963). Thus one m i g h t
attempt to put tags on by, say, trapping and use another method (e.g., hunting) f o r
recoveries. A difficulty with such an approach is in assuring that the two methods do
in fact result in independence of the two sets of probabilities. This cannot b e
ascertained from two sampling periods alone. Another, less crucial, limitation is t h a t
the variance formulas (given below) do not apply unless capture probabilities a r e
equal over all members of the population on the recapture occasion.

A summary of the assumptions is as follows:

(1) The marks (tags) are not lost and are always identified on recapture.

(2) The population is closed (but this assumption can be modified).

(3) Every individual has the same probability of capture (at recovery time).

Assumption (2) can be modified in two ways:

(2a) There are losses of tagged and untagged animals which occur at the same ra te ,
but there are no additions to the population. This does not change the p r o p o r t i o n
tagged and the estimate of population size remains valid but applies only to t h e
population at the time of first sampling (tagging).

(2b) There are gains to the population between initial tagging and recovery of tags,
but no losses, and the probability of capture is the same for all individuals during t h e
recovery period. If there are no losses, then at the time of recovery, there are still M
tagged individuals in the population, and the proportion tagged (m/n) estimates w h a t
fraction of the current population carries tags, so that the estimate of eq.8.1 app l ies
to the population at the time of recovery. Note that (2a) and (2b) thus estimate t h e
population size at tagging and at recovery.

As we have already noted, assumption (3) can be modified as:

(3a) Marking at random.

(3b) Independent probabilities of capture at both marking and recapture ( wh i c h
necessarily includes (3a) as a special case).

These several modifications depart from the conditions necessary for t h e
hypergeometric distribution to hold, and thus prevent strict applications of t h e
relevant variance formulas. One simple way to obtain a useful estimate of t h e
variance is to randomly subdivide the number of animals initially marked (M) i n t o
several subgroups, and to estimate the population size separately for each s u c h
subgroup. These independent estimates then provide the data for calculating a va l id
variance. How many subgroups to use depends on the number marked initially ( M )
and the fraction recovered, since there are obvious drawbacks in having any of t h e
subgroups result in no recoveries of marked individuals. Presumably one m i g h t
tolerate one such group, using the modified estimation formulas given below.

From a formal statistical point of view, the estimate of eq.(8.1) has t h e
drawback of having an "infinite bias". This results because there is always a f i n i t e
probability that m=0 (i.e., no marked animals are caught on the second occasion) .
Chapman(1951) proposed an adjusted equation to circumvent this difficulty:
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                                                    N̂  C  = 
(M+1) (  n + 1 )

( m + 1 )     -  1                                               (8.2)

which has variance estimate:

                                      v* =     
(M +1) (n  +1) (M -  m) (n  -  m)

( m  +  1 ) 2 ( m  +  2 )
                                   (8.3)    

When N is large, the hypergeometric distribution (sampling wi t hou t
replacement) is very closely approximated by a binomial distribution (sampling w i t h
replacement), and when P is sufficiently small, a Poisson distribution also p rov ides
an excellent approximation. On the other hand, when P is not very small, the n o r m a l
distribution may provide an adequate model. Various rules have been suggested as t o
to when to apply the several approximations in practice. Chapman(1948) used m/n a s
a guide to magnitude of P, and gave the following criteria:

N < 500                   m/n < .10             Poisson  
                                m/n > .10             binomial
500 < N < 1000      m/n < .075           Poisson  
                                m/n > .075           normal
1000 < N                 m/n < .05             Poisson   
                                m/n > .05              normal

However, other authors used less stringent rules. One of the best ways to gain i n s i g h t
into the differences due to various approximations is to intercompare sets of tables o f
the distributions for several examples.

The various approximations are particularly convenient in calculating a
confidence interval around an estimate from the Petersen method. DeLury (1951)
noted that, under the binomial assumption, P=M/N, so that the expected value of t h e
random variable (m) here representing the number of successes is:

                                                             E(m) = 
nM
N                                                                    (8.4)   

with binomial variance:

                                                     V(m) = 
nM
N    [1-(M/N)]                                                    (8.5)

so that if we substitute m/n as an estimate of P, an estimate of the variance of m i s
just m[1-(m/n)]. Going one step further, and assuming m is approximately n o r m a l l y
distributed, approximate 95 percent confidence limits for m are:

                                                          m ±2 [ m ( 1 -
m

n
) ]1 / 2

and DeLury inserted these values in the Petersen estimate (eq.8.1) to provide
confidence limits on N, i.e.,

                                        Upper limit =  
nM

m m m n{ [ ( / )] }
( . )/− −2 1
8 61 2                                  

                                         Lower limit = 
nM

m m m n{ [ ( / )] }/+ −2 1 1 2
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An alternative way to proceed is to write the estimate (eq.8.1) as N = M/p, where p =
m/n, and to use tables or graphs to find confidence limits on P in order to ca lcu la te
upper and lower limits for N from those for p.

Still another approach (Leslie 1952) can be described by changing eqs. 8.4 a n d
8.5 from those representing the random variable m, to those for a random v a r i a b l e
multiplied by a constant:

                                       E(aX) = aE(X)             and V(aX) = a2V(X)

where a is a constant. If we use a = 
 1
n M   , then:

                                                                     E(
m

nM  ) = 1/N                                                     (8.7)

                                                                 V(
m

nM  ) = 
1

nNM   [1-
M
N  ]

but since N is unknown, we estimate the variance by replacing 1/N by m/nM (eq.8.7
justifies this), and obtain:

                                                     s2(
m

nM  ) = [
m

(nM)2   ][1- 
m
n    ]                                          (8.8)

whereupon, assuming 1/N to be approximately normally distributed, one can o b t a i n
approximate 95% confidence limits on 1/N as:

                                                                    
1
√N

± 2 s(
m

nM  )                                                     (8.9)

The main advantage here is that estimators of N are quite skewed as can be seen f r o m
sampling experiments, or by considering p (=m/n) to be normally distributed a n d
reflecting what the distribution of 1/p will look like. It turns out that 1/N is m u c h
more symmetrically distributed, hence confidence limits expressed as in eq.(8.9) a r e
presumably less biased than those previously described here.

Assuming a binomial distribution (rather than the hypergeometric) leads to a
slightly different correction for bias in the estimation equations. Bailey (1952)
suggested:

                                                           N̂  B  = 
M ( n  +  1 )
( m  +  1 )                                                        (8.10)  

with variance estimate:

                                                      v1 =    
M 2(n + 1)(n - m)

( m  +  1 ) 2 ( m  +  2 )
                                         (8.11)  

The difference between eq.(8.2) and eq.(8.10) is clearly very small. Bailey (1952)
showed that N as estimated from eq.(8.1) tends to overestimate, having a bias "of o r d e r
1/m", while eq.(8.10) has a bias of order e-m.

Cormack (1968:460) and Seber (1982) provide convenient summaries of a
number of schemes to avoid biased estimates through "inverse" sampling. These
schemes require sampling on a second occasion to continue until some p r e -
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determined event happens, e.g, until exactly m marked animals are caught. In m a n y
field situations such schemes are very difficult to carry out, and, as p rev ious l y
indicated here, the crucial source of bias is that having to do with u n e q u a l
probabilities of capture, for which satisfactory corrections are presently difficult. I n
most practical situations, the investigator should use eqs. (8.2) or (8.10). If t h e
numbers of recaptures (m) is small enough to make the theoretical biases i n
estimation important, it will also be true that the estimates will be highly va r iab le ,
and thus will provide very little information on the population under study in a n y
case.

Example 8.1 Petersen method

Nixon et al. (1967) trapped and marked squirrels (  Sciurus  ) in Ohio in 1962. In
their first day of trapping, 22 individuals (M) were caught, while on the
second day, 13 were caught (n). Seven of these were marked (m), having also
been caught on the first day. From eq. (8.1), we have:

                                            N
^

   = 
22 (13 )

7     = 40.9, while Chapman's equation (8.2)

gives:

                                            N
^

  c  = 
23(14)

8    - 1 = 39.2, with variance estimate:

                                         v( N
^

  c ) = 
2 3 ( 1 4 ) ( 1 5 ) ( 6 )

6 4 ( 9 )    = 50.31

DeLury's estimated confidence limits are (eq. 8.6) calculated from:

                                                  
1 3 ( 2 2 )

7  +  2 [ 7 ( 1  -  
7

1 3) ] 1 / 2
  

   

which gives:   28.0   <   N   <   84.0.  Leslie's approach (eq.8.8 and 8.9) gives:

                                    s2(
nm
M   ) = 

7
13 22

1
7

132[ ( )]
( )− = 0.0000395

and 0.0119   <   1/N   <   0.0370 which is useful if one has some interest in the
reciprocal of population size. Inverting gives essentially the same result as
DeLury’s approach. Bailey's method (eq. 8.10) gives:

                                    N
^

  B  = 
22(14)

8    = 38.5  with variance estimate (eq. 8.11):

                                   s2(N
^

  B) = 
( ) ( )

( )
22 14 6

64 9

2

= 70.6.

8.3 The Schnabel method                                              

We now consider a situation wherein sampling is not restricted to two
occasions, and all of the unmarked animals caught in successive samples are m a r k e d
and returned to the population. In most applications, the marks only serve to ind ica te
that the animal has been caught previously and do not identify individuals. T h e
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method was first proposed by Schnabel (1938) and further studied by S c h u m a c h e r
and Eschmeyer (1943) who provided a variance estimate and an a l t e r n a t i v e
estimation formula (also derived by Hayne 1949) . The basic assumptions are t h o s e
previously given, i.e., (1) marks are not lost nor missed, (2) the population is closed,
and (3) constant capture and recapture probabilities.

A very convenient way to visualize the process and to derive the va r i ous
equations is that of DeLury (1958). An initial sample serves to introduce some m a r k e d
individuals into the population, and then k further samples are taken (giving k+1
sampling periods in all). Estimates are obtainable for population size in each of t h e
subsequent sampling occasions but not for the first (although the assumptions do, o f
course, imply that the population is of constant size throughout the study). It is w o r t h
noting that there is no requirement that the first set of marks be put on at r a n d o m
(i.e., that all individuals have the same probability of capture). Thus if it is feasible t o
mark a substantial number of animals by some inexpensive but obviously b iased
method, the investigator might profitably do so, and then revert to some m o r e
expensive means of capture that is more in line with the assumptions for the k
subsequent recapture periods.

The notation used here is as follows:

Mi= number of marked individuals in the population just before the it h sample i s
taken; i = 0,1,2,...,k so that Mo is the number marked on the first occasion.

ni  = number of individuals caught on ith sampling (since, in most studies, no = M1, w e
will be concerned here with n1,n2,...,nk ) .

mi  = number of tagged individuals caught in the it h sample; mo = 0, and we cons ide r
m1,m2,...,mk.

In any given sampling (after the initial marking), mi / ni  gives an estimate o f
the proportion marked in the population. If sampling is random with respect t o
whether or not the animal is marked (i.e., a constant probability of capture holds) ,
then we have a binomial-type situation applying at the time of sampling, and we c a n

write (with p = 
mi
n i

  ):

                                                                  E[
mi
n i

  ] = 
M i
Ni                                                          

(8.12)  

                                                      V[ 
mi
n i

  ] =  
M i
Nni

   [1- 
M i
N   ]                                                (8.13)

Since N is unknown, it is necessary to use mi / ni  to estimate the variance, as is u s u a l
in dealing with samples from a binomial distribution. The data from a c a p t u r e -
recapture study can be conveniently plotted with mi / ni  on the vertical axis and Mi
along the horizontal, and ideally should constitute a series of points ( mi / ni  and Mi)
scattered about a straight line through the origin. Solutions to the problem o f
estimating N depend on the choice of methods for fitting a regression line to the data.
That is, eq.(8.12) can be represented as a straight line through the origin with s lope
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equal to 1/N; if one writes yi= mi /ni  and xi= M i , then the line yi=bxi  is equivalent to e q .
(8.12)  with b=1/N.

Since the "y" values ( mi / ni ) are subject to sampling (chance) errors, a
weighted regression scheme is indicated. One choice is to use reciprocals of t h e
variance estimates [eq.(8.13)] as weights (thus the more precise data have g r e a t e r
weights). This procedure leads to Schnabel's original formula, which has to be solved
by iteritive (tr ial-and-error) methods; that is one finds a value of N most n e a r l y
sat is fy ing :

                                                            Σmi = Σ 
(ni - mi)Mi

N̂ -  m i
                                               (8.14)   

for which Schnabel gave an approximate solution as:

                                                                 N̂   = 
Σ  niM i
Σ  m i                                                          (8.15)  

However, DeLury pointed out that one of the common features of actual application o f
the method is that of a tendency for tagged individuals to be grouped or clustered i n
the habitat, which makes eq.8.13 a poor variance estimate (it underestimates). He
therefore proposed weighting by the "sample size" ( ni ) at each point in time. Th is
gives the simpler Schumacher-Eschmeyer formulation:

                                                                 N̂   =  
ΣniM

2
i

ΣmiMi                                                          
(8.16)   

A variance for the estimate (8.16) is calculated in the same manner as f o r
weighted regression equations. This gives:

                                               s2   = {Σ( m

n
i

i

2
)  - 

(Σ m iM i)2

ΣniM
2
i

  }/(k-2)                                (8.17)

and confidence limits are calculated from:

                                                              C.L. = 
Σ

Σ Σ
n M

m M t s n M
i i

i i i i

2

2 2 1 2 8 18
± α [ ]

( . )/                                                        

where the ±sign determines lower and upper limits respectively, and tα  refers to t h e
value obtained from t-tables for selected α  and k-2 degrees of freedom. An i m p o r t a n t
point here is that a small number of sampling times will result in fairly large va lues
of tα  and hence wider confidence limits than might be obtained with more days o f
t a g g i n g .
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Example 8.2 The Schnabel method

The trapping mentioned above (Example 8.1) was continued for a total of 11
days. The data are given below, along with the calculations for eq.(8.16).

            Number                               Tagged in
            caught        Recaptures       population

Day         (n          i        )                  (m       i           )                   (M      i          )                          Σ     m i    M  i               Σ      n i  M i    2              N
^

           

1 2 2 0 0 0
2 1 3 7 2 2 1 5 4 6 , 2 9 2 40.9
3 1 5 1 0 2 8 4 3 4 18 ,052 41.6
4 1 0 5 3 3 5 9 9 28 ,942 48.3
5 6 5 3 8 7 8 9 37 ,606 47.7
6 5 3 3 9 9 0 6 45 ,211 49.9
7 1 5 1 0 4 1 1 , 3 1 6 7 0 , 4 2 6 53.5
8 1 1 6 4 6 1 , 5 9 2 9 3 , 7 0 2 58.9
9 1 8 8 5 1 2 , 0 0 0 140 ,520 70.3
1 0 8 7 6 1 2 , 4 2 7 170 ,288 70.2
1 1 1 6 1 0 6 2 3 , 0 4 7 231 ,792 76.1

Using DeLury's regression approach to the data, we let yi = 
mi
n i

  , xi = Mi, and β = 
1
N  

Thus eq. (8.12) becomes E(yi) = β xi,  and a weighted equation using sample
sizes (ni) as weights is:

                β
^
   = 

Σwixiyi

Σw ixi2
   = 

ΣmiMi

ΣniM i2
      and this estimates the reciprocal of N, hence

eq.(8.16).

Calculating a variance estimate (eq. 8.17). we get:

       s2 = 
1
9   [44.772 - 

(3 ,047)2

2 3 1 7 9 2   ] = 0.5243, and 95% confidence limits for  N
^

  , from

eq. (8.18) are:

             
231792

3047 2 26 0 524 2317921 2+ . [( . )( )] /
= 

231792
3047 788 59± .

 or  60.4 <  N
^

    <  102.6  

Since the last day's trapping turned up 6 unmarked squirrels, there were at
least 68 (M11 = 62 and 6 unmarked) in the population, so the lower limit
should be 68. In the next hunting season, 41 squirrels were shot, of which 25

were marked. Using eq.(8.2), we have  √NC = 
69 42

26
1 110 5

( )
.− =  which is

appreciably above the upper limit. The authors felt that probabilities of
capture were not constant, with some individuals being more likely to be
recaptured.

Example 8.3 Estimation from frequency of capture

In a situation like that of Example 8.1 and 8.2, where it appears that the
population is being underestimated, the best cure no doubt is to identify the



                                                                                                                                                    8.10

faulty assumption and do something about it. This is not always as easy as it
sounds. One way is to mark by one technique and recover by another, e.g., to
tag by trapping and recover tags in hunting. However, this approach doesn't
necessarily cure the problem (see, for example, Eberhardt et al. (1963:43-47),
in which a particular model, the geometric distribution was postulated for
recaptures). There is, of course, no assurance that this model should hold
widely. Seber (1982:Ch.4) summarizes the theory and gives some other models
that might be used. Eberhardt (1969) found that the geometric distribution did
seem to fit a wide range of recapture data (40 sets on 10 species). An example
of application of the method is available in the paper by Edwards and
Eberhardt (1967). A series of taggings were carried out on a population of
cottontail rabbits confined to a 40 acre pen in Ohio, in the fall of 1961.
Data for a Schnabel census are set forth below.

                     No. of                                         Tagged in
                 captures            Recaptures          Population
Date                  ni                           mi                      Mi         

Oct. 24 9 0 0
       25 8 2 9
       26 9 6 1 5
       27 1 4 3 1 8
       28 8 4 2 9
       29 5 4 3 3
       30 1 6 8 3 4
       31 7 4 4 2
Nov.   1 9 3 4 5
         2 3 2 5 1
         3 8 7 5 2
         4 1 4 5 5 3
         5 2 1 6 2
         6 5 0 6 3
         7 1 1 5 6 8
         8 0 0 7 4
         9 5 5 7 4
        10 9 7 7 4
                   ______                _____                _____
Totals             142                       66                       76

Students should carry out the Schnabel  calculations in order to gain
familiarity with the method. Edwards and Eberhardt (1967:Table 3), using eq.
8.16, obtained a population estimate of 97 animals. The actual population in
the pen was 135 rabbits, previously caught by drive-netting (to avoid previous
experience with box-traps, which were used for the experimental study of
capture-recapture methods), and introduced on October 19, and 29, 1961.
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Frequencies of capture were:

           Number of            Number of         Number of
times caught        rabbits                                  captures                            

1 4 3 4 3
2 1 6 3 2
3 8 2 4
4 6 2 4
5 0 0
6 2 1 2
7 1 7

                                                 ____                 _____
7 6 1 4 2

The underlying model for the frequency distribution (geometric distribution)
is a very simple one:

                              f(x) = pqx               (x=0,1,2,....)

where q=1-p, and p is the probability that the animal will not be caught at
all, i.e., f(0) = p. Strictly speaking, the geometric distribution applies to
a conceptually infinite series of trials, and can be at best an approximation
to reality. Seber (1982:Ch. 4) can be consulted for various other theoretical
difficulties and for the nature of the approximations on which the method
rests. In the present instance, there were 18 trapping days and the maximum
number of time any individual was caught was 7. In some situations, when the
maximum number of captures approaches the number of capture occasions, an
adjustment for truncation may be needed (the number of trapping occasions sets
an upper limit on the possible number of recaptures). Seber (1982:172-174)
gives a method for doing this and uses the data of Example 8.2 above to
illustrate the method.

The essentials for estimation by the frequency of capture method are as
follows:

                     q
^

   = 
s  -  r

s  -  1                 and               N
^

   = 
r ( s  - 1 )
s  -  r   

where r is the number of individuals that are caught s times. Referring to the
data above, it may be seen that r = 76 and s = 142. Estimates thus are:

          q
^

   = 
1 4 2  -  7 6

1 4 1    = 0.468         and     N
^

   = 
7 6 ( 1 4 1 )

1 4 2  -  7 6     = 162.4

In this instance, the method thus overestimates the known population. The
estimates above can be used to set up a goodness of fit test by calculating
expected numbers as:

                                  E(nx) = Npqx                    x=1,2,...

and introducing estimates of N
^
   and  q

^
  . This yields the following results:
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                                              Original
          Number of                   number of             Calculated
          times caught                rabbits                                      number                          

1 4 3 40.42
2 1 6 18.92
3 8 8.86
4 6 4.15
5 0 1.94
6 2 0.91
7 1 0.42

                                                 ______                ______
                                                    76                       75.62

          These are obtained from √√√Npq =162.4(0.5319)(0.4681) = 40.43 for the
first entry, √√√Npq2 =162.4(0.5319)(0.4681)2 = 18.92, and so on (multiplying
each successive entry by 0.4681). It can be seen that the data are fitted
reasonably well. However, students should do a chi-square calculation to check
this. In the present example, 135 rabbits were introduced into the pen, so we
have 135 - 76= 59 in the not-caught (0) category. The expected number is
162.4(0.5319) = 86, which is substantially larger.

Example 8.4 Mean Petersen method

The Schnabel method depends on the population being closed (i.e., the same
population of N individuals is present throughout the study). If this
assumption is doubtful or disproven, then it is necessary to use a more
complex method in which rates of loss (and/or gain) to the population are
estimated. Before doing so, it may be worthwhile to consider a very simple
approach, in which Petersen estimates are formed from successive entries in
the table of data. That is, referring to the data of Example 8.2, the first 2
days can be used to obtain a Petersen estimate, then the results from day 2
and day 3 can be used, and so on. As noted in Sec. 8.2, the assumption of a
closed population can be relaxed somewhat for a Petersen estimate (assumptions
2a and 2b), so that the sequence of Petersen estimates may be used to look for
evidence of a trend in the population. If both gain and losses are taking
place, the method isn't, strictly speaking, acceptable. However, if day to day
changes aren't large, the overall average may be useful. This leads to the
"mean Petersen" estimate proposed by Chapman (1952; see also Seber 1982:138).

Estimates are formed according to eq.8.2 and averaged:

                         N
^

   = 
1

1 2k
Ni

i

k

− =
∑ √  (only k-1 estimates can be obtained from k

periods).
Variances can be estimated by averaging the estimates of eq. 8.3 as:

                                   ( v N
k

v Ni
i

k

1 2
1

1
1

( √)
( )

( √ )=
− =

∑ )

or as the variance of the individual estimates:
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                     v N
k k

N ave Ni
i

k

i2
2

21
1 2

( √)
( )( )

[ √ ( √ )]=
− −

−
=
∑

Students should perform the calculations using the data of Example 8.3.

8.4 Methods for "open" populations

All populations are subject to change, so the methods described thus far a r e
mostly useful under circumstances such that any change in population size is l i ke l y
to be of minor importance. As we noted earlier, if there are only gains or losses, t h e
Petersen method may give a valid estimate for one of the two sampling occasions. I n
general, however, one needs to have a method capable of taking into a c c o u n t
temporal changes in populations.

Early workers largely dealt with open populations by assuming constant r a t e s
of gain or loss. When populations are large, such deterministic models can be q u i t e
satisfactory. However, even when a large population is being studied, it usually t u r n s
out that some aspects of the study will depend on small numbers, and thus introduce a
stochastic element into the analysis. Consequently, a number of models have b e e n
developed that have both deterministic and stochastic elements. Some of these models
are very complex and require cumbersome or intricate calculations.  Versions of a
fully stochastic model for open populations were published by G.M.Jolly (1965) a n d
G.A.F.Seber (1965). Cormack (1968) suggested that, inasmuch as virtually iden t ica l
results were obtained independently by Jolly and Seber, the technique should b e
called the Jolly-Seber method.

Some of the earliest efforts to deal with open populations arose from t h e
pioneer studies of C.H.N.Jackson on tsetse fly populations in Africa ( Jackson
1937,1939,1940,1948). He used two rather different schemes, one (the "posi t ive
method") depending on a single release of a large number of individuals followed b y
a series of samplings in which marked and unmarked individuals were tallied, but n o
further marking was done (however, marked individuals were released again a f t e r
capture). In the second, "negative" method, marking was accomplished on a series o f
occasions but recaptures were tallied only in one final intensive sampling. T h e
negative method uses the greater reduction in returns from the earlier releases ( a s
compared to those from later releases) to estimate survival rates, which are in t u r n
used to estimate the number of marked animals alive in the population at the time o f
the final large scale recapture sampling. An estimate of population size at the f i n a l
sampling can thus be obtained from the Petersen formula, but M is now est imated
rather than known exactly. Because any immigrants are reflected in the f i n a l
sampling, it is not necessary to make special provision for measuring i m mi g r a t i o n
(of course the rate of immigration is not estimated).

On the other hand, the positive method may be expected to measure dilution b y
immigrants since all of the marking is done in the initial survey. Thus the decrease
in proportion marked in successive surveys should reflect the effect of i m mi g r a t i o n
(or other sources of unmarked animals). Combining the two methods gives t h e
necessary ingredients for a complete analysis, and this is what the more r e c e n t l y
developed methods are designed to accomplish. Although direct use of the Jackson
methods is not now recommended, it may happen that one of the two schemes may b e
useful in special circumstances -- for example, in Jackson's work unskilled ass is tants
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were sometimes used to carry out marking on a broad scale. Bailey (1951,1952) g a v e
improved estimates for Jackson's methods, while Chapman and Robson (1960)
described methods to improve on his survival estimates.

A method ascribed to Fisher and Ford (1947) is mainly of historical interest b y
virtue of its use of a "trellis" diagram to classify recaptures on each day by the dates
of release. The method thus uses data on all previous recaptures of individuals. No
variance estimate was given. A detailed study by Leslie and Chitty (Leslie and Chi t ty
1951, Leslie 1952, and Leslie, Chitty, and Chitty 1953) developed a rather ex tens ive
approach to dealing with open populations. They assumed that, with small samples,
observational data as to various classes (e.g., date last caught) can be represented as a
multinomial distribution, and thereby produced a series of estimating equations. One
problem is that the solutions are very difficult to obtain if there are a number o f
sampling periods.

It is intuitively evident that estimation of gains and losses from a popu la t ion
will require a minimum of three sampling periods. Thus "Bailey's triple ca t c h "
method (Bailey 1951, 1952) is of interest both as an illustration and a p rospec t i ve
method for either pilot studies or rapid estimates. The various items of data are a s
follows:

   Period(i)       Time       Total             Total tagged    Marked individuals
                                      captured        and released    caught later
           0            0                                       so
           1            t1              n1                    s1                  m01
           2            t1+ t2      n2                                           m012,m02,m12

In the above table, m01 are those caught in the first time period and recaptured i n
the second. Some of these appear again in the third period and are labelled m012. T h e
estimates are:

                                                  
√ ( )
N

s n m m

m m1
1 1 02 012

01 12

= +
                                                      (8.19)

                                            λ̂   = exp(β̂   t2) = 
m01n2

n1(m 02+ m 0 1 2 )                                         
(8.20)   

                                             µ̂   = exp(-α̂   t1 ) = 
s1(m02+ m 012)

s0m12
                                      (8.21)  

Variance estimates are:

                          v(N̂  1) =  N̂  12 [
1

m0 1    + 
1

m1 2
   +  

1
m 02  +  m 0 1 2

   - 
1

n1
  ]                   (8.22)

                          v(λ̂   ) =  λ̂    2 [
1

m0 1    +  
1

m 02  +  m 0 1 2
    -  

1
n1    - 

1
n2

   ]                      (8.23)

                              v(µ̂  ) =  µ̂  2  [
1

m1 2
   +   

1
m 02  +  m 0 1 2

    ]                                          (8.24)
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Note that e x p ( √βt2) estimates the gains to the population in the time interval (t2)

between second and third captures ( √β  is an instantaneous rate, while e x p ( -α t1)
measures losses in the first time interval (t1 between initial marking and the second
sample (first recaptures). For the method to be strictly valid, it has to be assumed t h a t
rates of loss and gain are constant during the study period, so the important est imates

are √βand √α . With this arrangement, one avoids the necessity for having t1 = t2.

The fully stochastic (Seber-Jolly) models use some additional notation and, i n
common with many earlier models, require knowledge of the identity of ind iv idua l
animals, or at least the occasions on which individuals are marked, so that in m a n y
cases identification of individuals is practically essential. Additional symbols used a r e
as follows:

si  = marked animals released on the it h occasion (the si  may be equal to the ni  if a l l
unmarked animals are marked and no individuals are killed in handling or o the rw i se
removed from consideration).

r i = the number of the si  that are again caught before the study is concluded.

zi  = number of individuals in the population that have been marked before the it h

period and are caught again after the it h period but not during the it h period ( t h i s
then is a measure of the marked animals known to be present during the it h pe r i od
but not caught then).

The first estimate required is that of the number of marked individuals (Mi) alive a t

the ith period:

                            Μ̂    =  
zisi
r i      + mi                               (i=1,2,...,k-1)                             (8.25)

There are again k+1 marking periods, the first (denoted by a subscript of zero) a n d
the last (k) for which there is not sufficient data to estimate Mi  The basis for eq.(8.24)
can be seen intuitively by considering the fraction zi / (M i - mi ) -- this is t h e
proportion of the marked animals alive at time i that are not caught then but a r e
subsequently caught. Furthermore, out of the si  released on the it h occasion, ri  a r e
caught later. If the animals behave alike (the key assumption of equality of c a p t u r e
probabilities, again), then clearly these two fractions should measure the s a m e
quantity; hence equating them gives:

                                                                
z i

M i  -  m i
    = 

ri
s i

  

and rearranging yields the estimate of Mi given in eq. 8.26. Perhaps it should b e

mentioned that mi represents number of tagged animals in the catch ( ni ) at the it h

period, as it has in previous models. Also, we retain the assumptions that tags a r e
neither lost nor misread, as well as that of equality of probability of capture a m o n g
individuals on each occasion (however, this probability can change b e t w e e n
occasions) .
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Population size on the ith occasion is simply estimated by the Petersen method:

                                         N̂  i = 
niM

^
i

m i
                                  (i = 1,2,...,k-1)  .                    (8.26)

Again, estimates for the first and last periods are not available.

Survival between sampling occasions ( √φi ) is estimated very simply from the
data on Mi :

                                    Φ̂  i =  
M̂i + 1

 M̂i  +  s i  -  m i
                       (i=0,1,...,k-2)                   (8.27)  

The denominator is comprised of the M̂  i  animals estimated to be alive at the it h

trapping plus any newly marked animals actually released at that time (si - mi ) .

The number of animals coming into the population is estimated as:

                   β̂  i =  N̂  i+1 -  Φ̂   i ( N̂  i - ni + si)                     (i=1,2,...,k-2)                  (8.28)

and the logic of the estimate is evident from its structure. There are Ni  animals in t h e

population at the ith sampling of which ni -si  are removed (i.e., the ni  caught m i n u s

any removals; often ni=si  and none are removed by the experimenter). A f rac t ion √φi

of these survive to the next period, so the equation estimates the number of " rec ru i t s "
still alive at the i+1st sampling.

A fifth estimate, that of the probability of capture at the ith sampling is often
usefu l :

                                                                     √p i = 
n i

N̂i
                                                          (8.29)  

Again the logic is straightforward, and an equivalent estimate is √p i= mi/ M i.

The variances of the several estimates are complicated, reflecting the
complexity of the underlying theoretical development. Seber (1982:Chapter 5) gave a
full treatment. A briefer version with simpler equations appears in the monograph
by Pollock et al. (1990). They use corrections for small sample biases of the kind used
in eq.(8.2). Most users will no doubt depend on a computer program to estimate
variances. A number of programs are available, and the Wildlife Society maintains a
Web Page with access to a variety of programs. The address is:

h t t p / / fw ie . fw . v t . edu /wsb /

This page  contains a link to the  Colorado State University Department  of  Wildlife
and Fisheries and  Colorado Cooperative Unit Web Page  which provides access to
program MARK, currently one of the major programs for capture-recapture and
survival estimation. The Appendix to the present course contains a program (JSMP)
to do the main calculations and to bootstrap results.
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Example 8.5 the Jolly-Seber method

The main difficulty in applying this method lies in understanding and making
an accurate tally for the basic tables from which the estimates are made.
These procedures can best be understood by starting with Table 8.1, which is a
tabulation of the history of capture for 56 Weddell seals. There were 5
sampling or census occasions. On the first (i=0),. 28 tags were put out. On
the second (i=1), 12 new animals were tagged, 11 on the third, and 5 on the
fourth. None were tagged on the fifth census (but this quantity is not
relevant to the estimates, anyhow)

The entries in each census column denote the history of a given animal. Thus,
tag number 1 was caught initially, but never seen again, while numbers 11 and
12 showed up on every occasion. Number 30 was not tagged until the second
census (i=1) and was not seen on the fourth (i=3), but showed up again on the
fifth visit to the study areas.

The basic table of summary data is Table 8.2, in which the entries are the

mhi, which is defined as the number caught in the ith sample that were last

captured in the hth sample. The top two rows contain basic data from the
actual census trip. The first item is the ni, total number of animals examined
on each census. The second item contains the number of tagged animals that
were released at that census. In many studies, all of the untagged animals
would be tagged and released, so that si, the number of tagged animals
released into the populations at each census would be equal to ni. In the
present example, this was not possible, so that of the 63 (n0) animals
observed in the first census, only 28 (s0) were actually tagged.

The mhi entries in the body of the table start with m01, which is the number
of the 28 animals tagged on the first visit (i=0) that were found again on the
second visit. The next entry in that row (m02=2), are those of the 28 tagged
animals that did not show up until the third census (i=2). The final entry
(m04=1) is tag number 22, who was observed only in the first and last
censuses. All of this data comes from the first 28 tag numbers.

The next row of the table of mhi includes tagged animals last seen on the
second census (h=1) and then observed on the third, fourth or fifth census.
This now brings in the data from tag numbers 29-40, as they were tagged in the
second census. Totals of the table row entries constitute the rh , the number

of animals last captured on the hth sample and then reobserved at some time in
the future. The final column includes those animals initially tagged but not
observed again (i.e., tag numbers 1,2,5,6, etc.). This number is not used in
the calculations, but serves as a check, since rh plus this number equals the
number of tagged animals released in the appropriate census (e.g. the 28 of s0
equals 17 + 11).

The only really practical way to be sure of one's understanding of this
procedure is to actually reconstruct the other table entries from Table 8.1.

A second table is usually prepared as a means of calculating the zi. This is

shown as Table 8.3, which shows the chi, those individuals caught in the ith

sample that were last caught in or before the hth sample. Thus inspection of
Table 8.1 shows that c02=2, i.e., tag number 3 and 8 meet this criterion. We
also have, as a further example, that c04=1, since there is only one



                                                                                                                                                    8.18

individual (tag 22) caught in the first and last censuses only. The sum of the
row entries give z1, z2, and z3. These totals should be checked by scanning
the tables with the appropriate definition in mind. For example, z2 is the

number of animals  caught both before and after the 3rd census (i=2). Hence,
tag numbers 9,10,13,16,17,22,...,40 qualify (11 in all). One could, of course,
just make such a tally directly and not bother with Table 8.3, but it is best
to have the cross-check resulting from making the table and then a direct
count. Logically, entries c01, c12, c23, and c34should be in the table, but
these are just m0, m1, and m3 and do not correspond with the definition of z1,

i.e., caught before and after but not in the ith sample. Once the necessary
ingredients are in hand, calculation of the estimates is straightforward from
the definitions given in equations 8.25 to 8.29.

Table 8.1. History of capture for Jolly-Seber census.
                    Tag                          Census number
                    number  0 1 2 3 4
 Tags put out at first census                                             

1 1 - - - -
2 1 - - - -
3 1 - 1 1 1
4 1 1 - - -
5 1 - - - -
6 1 - - - -
7 1 1 - - -
8 1 - 1 1 1
9 1 - - 1 1

1 0 1 - - 1 1
1 1 1 1 1 1 1
1 2 1 1 1 1 1
1 3 1 1 - - 1
1 4 1 1 1 1 1
1 5 1 1 1 - 1
1 6 1 1 - - 1
1 7 1 1 - 1 -
1 8 1 1 1 - -
1 9 1 - - - -
2 0 1 - - - -
2 1 1 1 1 - 1
2 2 1 - - - 1
2 3 1 - - - -
2 4 1 - - - -
2 5 1 - - - -
2 6 1 - - - -
2 7 1 - - - -
2 8 1 1 1 1 -

___________________________________________________________
Tags put out at second census                                                  

2 9 - 1 1 1 1
3 0 - 1 1 - 1
3 1 - 1 1 - -
3 2 - 1 - - -
3 3 - 1 - - -
3 4 - 1 - - 1
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3 5 - 1 - - -
3 6 - 1 - 1 1
3 7 - 1 - 1 -
3 8 - 1 - 1 1
3 9 - 1 1 1 1
4 0 - 1 - - 1

___________________________________________________________
Tags put out at third census                                             

4 1 - - 1 - -
4 2 - - 1 - -
4 3 - - 1 - -
4 4 - - 1 - -
4 5 - - 1 1 1
4 6 - - 1 - -
4 7 - - 1 - -
4 8 - - 1 1 -
4 9 - - 1 - -
5 0 - - 1 - -
5 1 - - 1 1 1

_________________________________________________________
Tags put out at fourth census                                               

5 2 - - - 1 1
5 3 - - - 1 1
5 4 - - - 1 -
5 5 - - - 1 -
5 6 - - - 1 -

__________________________________________________________
Table 8.2. Tabulation of the mhi, the number caught on the ith sample last captured on the hth

sample.
i 1 2 3 4 5                                                      

_____________________________________________________________
ni 6 3 4 3 4 1 4 2 58                             number not
s i 2 8 2 4 2 4 2 2 2 3 rh           seen again
0 - 1 2 2 2 1 1 7 1 1
1 - - 1 1 4 4 1 9 5
2 - - - 1 1 3 1 4 1 0
3 - - - - 1 5 1 5 7

                 ______________________________________________________
mi 0 1 2 1 3 1 7 2 3

Table 8.3. Tabulation of chi, the number caught in the ith sample last caught in or before the hth

sample.
                                                                        i

h 1 2 3 4 5 Total
____________________________________________________________

- - 2 2 1 5 = z1
1 - - - 6 5 11 = z2
2 - - - - 8 8 = z3
3 - - - - -

             ____________________________________________________________
A program in the Appendix (JSMP) calculates these results, and is illustrated
with the above data.
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8.5 The Manly-Parr method.

The Jolly-Seber method has largely become the standard method for dealing
with open populations. A method devised by Manly and Parr (1968) gives very much
the same results, but has not been widely used. With the availability of computer
programs for the Jolly-Seber method, the Manly-Parr approach may not receive
much further attention. It does have the advantage of simplicity and is worth
remembering inasmuch as estimates can be obtained with an ordinary calculator.
One can thus explore a set of data with without needing reference or access to a
computer. Tabulate the data in a matrix of zeros and ones with dates of observation as
columns and records of individuals as rows. For every column (except the first and
last) identify  those individuals known to be in the population on that date by finding
those that were seen before and after that date. Label this group as CI where i= 2,3,…,
k-1 (or 1,2,3, …,k-1 if you designate the first occasion as 0 as done in the Jolly-Seber
notation). Now count the number of individuals that were actually observed on that
occasion, and designate them as ci. Then:

                                                       ƒp
k

Ci
i

i

=              (i = 2,3,…,s-1)                      (8.30)

estimates the probability of capture on the ith occasion, and the population present
on that date is estimated as:

                                                        ƒ
ƒ

N
C

pi
i

i

=             (i = 2,3,…,s-1)                      (8.31)

The following figure shows Jolly-Seber and Manly-Parr estimates for a number of
sets of data from a capture-recapture study of Weddell seals in Antarctica, and shows
that the two methods gave virtually identical results.

Fig.  8.1. Comparison of Manly-Parr and Jolly-Seber estimates for Weddell seal data.
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A segment of data from that study appears below to illustrate the method.

DATE 1 2 3 4 5 6
TAG NO.

727 1 0 1 0 0 0
748 1 0 1 1 1 0
818 1 1 1 1 1 1

1030 0 0 1 1 1 0
1040 1 1 1 1 1 1
1274 1 0 0 1 1 0
1286 1 1 1 0 1 1
1288 1 1 1 1 1 0
1445 0 0 1 0 1 0
1541 1 1 1 0 0 0
1577 1 1 0 0 0 0
1590 1 1 1 1 0 0
1594 1 1 1 1 0 1
1620 1 1 1 0 0 0
1893 1 1 1 1 1 0
1901 1 1 0 0 1 1
2018 1 1 1 1 1 0
2097 1 1 1 1 1 1
2285 1 1 1 1 1 1
2593 1 1 1 1 0 0
2619 1 1 1 1 0 0
2673 0 1 1 1 1 1
2700 0 0 1 1 1 1
2708 0 1 0 1 1 1
2717 1 1 1 1 1 1
2807 0 0 0 1 1 1
2930 1 1 1 1 1 0
2945 1 1 1 1 1 1
3010 1 1 1 1 1 1
3454 1 1 1 1 1 1
3511 1 1 1 1 1 0
3585 1 1 1 1 0 0
3685 1 1 1 1 1 1
3714 0 0 0 1 1 1
3923 1 1 1 1 1 1
3949 0 0 0 0 1 1
3999 1 1 0 1 1 1
4071 1 1 1 1 1 1
4190 0 1 1 1 1 0
4220 1 1 1 1 1 1
4224 1 1 1 1 1 1

Ci                                         31             31          30             22
ci                                         28             27          27             21
pi                                       0.903       0.871      0.90        0.954

Because this is only a segment of the data, the results should not be taken as actual
estimates of seal numbers.
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The reason that the Jolly-Seber and Manly-Parr methods give essentially the
same results, as suggested in Fig. 8.1, is that the equations for the proportion marked
in the population actually converge to give identical values as the number of
observations (i) increases. As discussed in Example 8.5 above, in some cases all
unmarked individuals cannot be tagged at the time of capture, but instead “batch”
tagging may be employed and an individual is treated as though it were newly tagged
at the time of first capture. With this change, the main results and calculations are
essentially the same, whether all newly caught individuals are tagged at capture, or
only those carrying a tag from independent captures are considered as newly tagged.
Convergence of the two methods can be shown most conveniently by starting with
the estimate of the proportion tagged given below eq. (8.29):

                                                           √
√p

m

M
i

i

i

=                                    (i = 2,3,…,s-1)             (8.32)

introducing the estimate of the number marked in the population given by eq.(8.25),
and rearranging to give:

                                 √ ( )p R z

m r

R C k

m r

i
i i

i i

i i i

i i

=
+

=
+ −

1

1

1

1
                                                     (8.33)

                                             
This uses the evident fact that zi = Ci – ki . As i increases, the number of marked
animals released (Ri) eventually becomes equal to the number of marked animals
encountered in the ith sample (mi) because there are no more initially marked
animals that have not already been sighted for the first time. Similarly, ki becomes
equal to ri , giving:

                                      √ ƒp
C k

k

k

C
pi

i i

i

i

i
i=

+ − = =1

1

This then ultimately results in identical population estimates by the two methods for
“batch” marking.

In the case of “batch” marking, the total population size is estimated by
dividing the total number of animals seen (marked and unmarked) by the estimates
of proportion seen [Eqs. (8.29) and (8.30)]. Comparisons of the two methods thus
depend on eqs.(8.29) and (8.30), as the total number seen will be the same in both
cases.

When marking of previously unmarked individuals continues throughout the
study (“continued” marking), the Jolly-Seber method estimates total population size
as Seber (1982, eq. (5.8,p.200):

                                       √
√

N
M n

mi
i i

i

=                                              (i  =  2,3,…,s-1)

When there are no losses at capture, the number released is equal to the
number seen, so:
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√ [ ]N R

R z

m ri i
i i

i i

= +1                                                 (8.34)

For the Manly-Parr method with continued marking:

                                                 ƒN
RC

ki
i i

i

=                                                          (8.35)

  Again, as RI approaches mI and ki approaches rI with zi = Ci – kI we have
equivalence of the two methods.

Example 8.6.     Manly-    Parr     method.

Example 8.5 illustrated the Jolly-Seber method and the same data set is
used here to demonstrate calculations for the Manly-Parr method. Ci and ki are
calculated just as illustrated above (page 8.21), with the data of Table 8.1
rearranged below in the same manner as on page 8.21.

1 1 0 0 0 0
2 1 0 0 0 0
3 1 0 1 1 1
4 1 1 0 0 0
5 1 0 0 0 0
6 1 0 0 0 0
7 1 1 0 0 0
8 1 0 1 1 1
9 1 0 0 1 1

10 1 0 0 1 1
11 1 1 1 1 1
12 1 1 1 1 1
13 1 1 0 0 1
14 1 1 1 1 1
15 1 1 1 0 1
16 1 1 0 0 1
17 1 1 0 1 0
18 1 1 1 0 0
19 1 0 0 0 0
20 1 0 0 0 0
21 1 1 1 0 1
22 1 0 0 0 1
23 1 0 0 0 0
24 1 0 0 0 0
25 1 0 0 0 0
26 1 0 0 0 0
27 1 0 0 0 0
28 1 1 1 1 0
29 0 1 1 1 1
30 0 1 1 0 1
31 0 1 1 0 0
32 0 1 0 0 0
33 0 1 0 0 0
34 0 1 0 0 1
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35 0 1 0 0 0
36 0 1 0 1 1
37 0 1 0 1 0
38 0 1 0 1 1
39 0 1 1 1 1
40 0 1 0 0 1
41 0 0 1 0 0
42 0 0 1 0 0
43 0 0 1 0 0
44 0 0 1 0 0
45 0 0 1 1 1
46 0 0 1 0 0
47 0 0 1 0 0
48 0 0 1 1 0
49 0 0 1 0 0
50 0 0 1 0 0
51 0 0 1 1 1
52 0 0 0 1 1
53 0 0 0 1 1
54 0 0 0 1 0
55 0 0 0 1 0
56 0 0 0 1 0

Calculations for the above table:

C 15 22 21
k 10 11 13
n 63 43 41 42 58
p-tilde 0.667 0.500 0.619
N-hat 64.5 82.0 67.8

 Here, p-tilde is calculated with eq.(8.30) and N-tilde uses eq. (8.31). A
program (JSMP)to do the calculations is in the Appendix. It can be  used for
both the Jolly-Seber and Manly-Parr methods. A sequence longer than that of
this example is required before the two sets of estimates converge. Even with
this short sequence, the estimates are in fair agreement. Bootstrapping can be
accomplished with the program, and the results f0r 1,000 bootstraps appear in
the following table:

95% CONFIDENCE INTERVALS
JOLLY SEBER

i 2 3 4
LOWER 48.2 63.5 51.5
UPPER 107.5 214.9 114.4
MANLY-PARR
LOWER 47.8 58.6 51.9
UPPER 103.2 143.5 105.0

ORIGINAL DATA COMPARED  TO BOOTSTRAP MEANS
i 2 3 4

JOLLY-SEBER
N-hat 65.6 100.5 71.0
BOOTSTRAP MEANS 68.2 109.9 74.0
MANLY PARR
N-tilde 64.5 82.0 67.8
BOOTSTRAP MEANS 67.0 86.9 70.8
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The limited amount of data results in wide confidence limits, with only the
upper estimates for the 3rd period being much different for the two methods,
likely as a consequence of the different estimates for that period from the
two methods.

For an example based on a much larger sample, some data on Hawaiian monk
seals used by Eberhardt et al. (1999) have been processed with the same
program. The results from the “Original data” worksheet follow:

Here we see that the estimates p-hat (Jolly-Seber) and p-tilde (Manly-Parr)
are virtually identical. Bootstrapping (B =1,000) gave the results of Fig.
8.2.

Figure 8.2. Bootstrap confidence limits for census data on Hawaiian monk seals
collected on Laysan Island.
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The “estimates” in Fig. 8.2 are actually the bootstrap means, but the actual
estimates were virtually the same as the bootstrap means, being within 1 or 2
individuals. The original data for this site and for another (Lisianski
Island)are on sheets attached to the program (JSMP) described and attached to
the Appendix.

8.6. Tests of assumptions

As has been emphasized in previous sections, the crucial assumption i n
capture-recapture studies is that of equal probabilities of capture among t h e
individuals comprising the population. Two major categories of failure of t h i s
essential assumption are:

(1) The probability of capture inherently varies among individuals.

(2) The probability of capture changes with exposure to the capture method.

The first class can be subdivided into two obvious groups, one being based on t h e
frequent observation of behavioral differences between sex and age classes. This is a
prospect most investigators will have in mind in designing a study, and one w h i c h
can normally be dealt with by doing the necessary calculations for such g r o u p s
separately. No doubt there will be other, more subtle, differences among ind iv idua ls
that will result in non-uniformity of response to the capture method, but, as w i t h
most features of free-living populations, such "second-order" differences can b e
neglected for many purposes.

The second sub-division of the first category constitutes the prospect of n o n -
uniform application of the capture method. One of the most likely prospects is t h e
occupancy of a "home-range" or "territory" by many terrestrial species. Unless t h e
capture methods can be uniformly (or randomly) applied to the area under study o n
each sampling occasion, it is very likely that individuals will have rather d i f f e r e n t
probabilities of capture. Live-trapping provides one example. If traps fall we l l
within a heavily-used part of an individual's home range, clearly that individual c a n
be expected to have a higher probability of capture than would be the case if the t r a p
falls outside the periphery of the usual home range. One obvious precaution is to u s e
a high density of traps relative to home range size; another is to move traps abou t
during the study. Some work has been done on apparent effects of trap density, b u t
very few efforts have been made to study the effect of shifting trapping p a t t e r n s
during the course of a study.

The second category is well-known, usually being labelled "trap-shyness" o r
"trap-proneness". Certainly there is little doubt that individuals of some spec ies
become very skilled at avoiding traps. Trap-proneness needs to be viewed with a l i t t le
more caution. This is because a uniform probability of capture may n o n e t h e l e s s
result in what appears to be an excessive number of captures for some ind iv iduals .
More explicitly, with probability of capture P and n sampling periods, the p robab i l i t y
that a given individual is caught x times follows the binomial distribution, which i n
turn, if P is small and n large, may be closely approximated by a Poisson d is t r ibu t ion .
Samples from a Poisson may well give the impression that some individuals a r e
caught unduly often, that is, randomness usually doesn't look "random".

An immediate test to use on recapture data is to compare the frequencies w i t h
which individuals are captured with those expected under the hypothesis of a
constant probability of capture: either a binomial or the corresponding Poisson
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approximation. The simplest such test is the chi-square goodness of fit test. If there i s
evidence of appreciable gains to or losses from the population during the study t h e n
it is not appropriate to apply the test to all of the data. One must instead limit the tes t
to a group of individuals known to be in the population during the period used. Th is
means taking a set of individuals caught early in the study, and again before i t s
conclusion. One thus has a group of individuals caught two or more times and k n o w n
to be alive in some fixed time interval. Ideally, one would deal with a set of animals a l l
caught on one of the first sampling periods, and then all caught again in the s a m e
period near conclusion of the study. In practice it may be necessary to g r o u p
adjacent periods to obtain enough individuals to make the test worthwhile. A n
alternative test, suggested by Leslie(1958), is to apply the "binomial dispersion" test.
This test compares the observed variability in frequencies of capture with t h a t
expected on theoretical grounds if the binomial distribution applies. Lesl ie(1958)
suggested that at least 20 individuals should be available for the test, with 3 or m o r e
intervening recapture periods. Very likely the binomial dispersion test is to b e
preferred over the chi-square goodness of fit test.

Before applying any test to detect a violation of the underlying assumpt ions
one needs to have a rather explicit notion as to what is being tested for, and w h a t
alternatives exist. Thus the above test assumes a constant probability of c a p t u r e
throughout the study, and may give an indication as to prospects for i n h e r e n t
differences in "catchability". Those problems associated with "trap-shyness" and i t s
converse may be mainly associated with the first capture (or first few captures) a n d
thus may not be detected in these tests. Also, if there are individuals in the popu la t ion
with essentially zero probability of capture, then no test based on recapture data c a n
detect that problem (unless the true population size is known or otherwise est imated;
even so very substantial numbers of recaptures may be required, s e e
Cormack(1966)).

Various tests for the second category of violation of the basic assumption o f
constant probability of capture are given by Seber(1962,1965), Darroch(1958,1959),
Leslie (1952), and Leslie, Chitty, and Chitty(1953). Little use seems to be made of t h e s e
tests in practice, perhaps as a consequence of the complexity involved in t h e i r
derivation and description. It is also unfortunately true that none of the tests a r e
very "sensitive", i.e., they do not detect anything but extreme departures f r o m
equality of capture probabilities. The program “MARK” referenced in Section 8.4
above provides a wider range of tests, along with a criterion (AIC) for c h o o s i n g
among candidate models.

8.7 Exercises

8.71 Plot y(i) and x(i) of Example 8.2 and comment on validity of the underlying
model.

8.7.2 Carry out the calculations for a Schnabel estimate on the data of Example 8.3.
Plot y(i) and x(i) and comment on validity of the underlying model.

8.7.3 Do a  chi-square calculation on the observed and expected frequencies of
capture calculate in Example 8.3. The actual population in the pen was 135 rabbits
giving 135-76=59 in the not-captured category. Use chi-square to check this against
the expected number and comment on your results.
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8.7.4 Mean Petersen method.
Calculate the mean Petersen estimate described in Example 8.4 on the data of Example
8.3. Plot the data and compare with a plot of the Schnabel estimates obtained in
Exercise 8.7.2. Discuss your results.

8.7.5  Testing for constant probability of capture

In Example 8.2 (Schnabel), frequencies of capture were:
             Number of                           Number of
             times caught                      squirrels                                     

1 3 3
2 1 6
3 1 0
4 4
5 2
6 3

                                                                 _____
6 8

if the probability of capture is constant, these frequencies should be approx imated
by a Poisson distribution. Use a chi-square test to check the goodness of fit.

8.7.6  Interpenetrating sampling

When animals are tagged in groups and tend to stay that way (i.e., clumped) until t h e
recapture period, then it is essential that recaptures yield a random sample of t h e
population, or at least that the probability of recapture not depend on whether or n o t
a given individual is tagged. Sometimes this can be accomplished by taking a r a n d o m
sample of locations for recapture. If the recaptures come in groups, then eq.8.3, o r
any equation based on the assumption of random sampling of individuals, is n o t
realistic. For an example of the bias that may result, students should refer to Example
4.8 and compare the variances obtained there with interpenetrat ing sampling w i t h
what would be obtained by combining all of the recaptures and using equation 8.3.

8.7.7 Double-tagging

Tag loss can be a major source of bias in many circumstances. One way to improve the
situation is to apply two tags to each individual. When this is done, then the
probability of loss can be estimated from:

         p̂   = 
ms

m s +  2md
    where ms and md refer respectively to the number of

recaptures carrying only one tag (ms) and retaining both tags (md). A variance
estimate is:

                                          v(p̂  ) =  p̂  2 (1 -  p̂  )2 [
1

ms    + 
1

md
  ]

and the appropriate Petersen estimate then becomes that of eq.8.1:

                               N
^

  d = 
Mn

m~
            where m~    = 

( m s +  2md)2

4md
  

with approximate variance:
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                                           v(N
^

  d) = 
N
^

d2

m~
   

p̂

( 1 - p̂) 2
    +   

N
^

d2

m~
   

Data for calculations are taken from a fur seal double-tagging study (Abegglen et a l .
1958), in which 34,923 male fur seal pups were single-tagged and 5,000 double- tagged
on St. Paul Island off Alaska. In 1961, 48,458 three year old males were ha rves ted ,
yielding the following returns:

2,098 originally single-tagged
258 double-tagged (md)
140 single-tagged (ms)

Students should estimate: (1)  p̂  , (2) v ( p̂  ), (3) m~   , (4) v (N
^

  ) , and, (5) calculate an

adjusted estimate from the single-tagging using  p̂  , i.e.:

            N
^

  adj = 
Mn

m~
  (1 -  p̂)  

with variance:

                                             v(N
^

  adj) = (1 -  p̂  )2v ( N
^

  ) + N
^

  2v ( p̂  )

8.7.8 Models for double-tagging

The underlying probability model for double-tagging is quite simple, and s tudents
should work out the basis for the above equations. Note that the probability of loss o f
each of the two tags is assumed to be the same. If the tags are of different kinds ( o r
location, etc.) this assumption should be checked (with chi-square) and sepa ra te
corrections may be required.

8.7.9 Survival estimation in a three-point census

The simplest census method for an open population requires observations on 3
occasions (an initial marking, a recapture period in which any unmarked are
marked and a final capture period). Survival from tagging to the first recapture time
is simply estimated as:

               Φ̂  01 = 
M1
M0

 
m0 2

( m 1 2  +  1 )         with  v(Φ̂  01) = Φ̂   012  (
1

m0 2   + 
1

m1 2
  )

Data for southern hemisphere fin whales (17th report of International Whaling
Commission) are:
                                     Number

            Season              marked*                          m02                m12            Φ̂                      

1 9 5 3 - 1 9 5 4 1 1 8 1 4 4 2 0.64
1 9 5 4 - 1 9 5 5 2 3 1 4 0 4 8 0.77
1 9 5 5 - 1 9 5 6 2 1 7 3 5 1 2 1.60
1 9 5 6 - 1 9 5 7 1 2 9 9 3 6 0.28
1 9 5 7 - 1 9 5 8 1 5 1 1 6 1 4 0.74
1 9 5 8 - 1 9 5 9 1 0 5 7 4 0.75
1 9 5 9 - 1 9 6 0 5 6 3 1 4

             * Recoveries in the same season as the marking are not utilized.
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Students should calculate Φ̂   01  and the associated variance estimates, which might b e
compared with a variance calculated from the 7 estimates (which are not, h o we v e r ,
i ndependen t ) .


